Saturday 8 September 2018

Things You Should Know A High Voltage Contactor

By Robert Hughes


At the end of the 19th century, advances in the semiconductor technology introduced solid state switches. These type of switches replaced the older models that were being used before. Such models included thyratrons, ignitrons, and spark gaps. Before the invention, electronics used older drivers which have since been replaced by TTL input controls that have dramatically improved performance and efficiency. A high voltage contactor has been used a lot in the past few years and there are a lot of details that make them stand out.

There is a lower input power loss compared to another type of switches. This is attributed to the use of MOSFET technology. This technology dramatically decreases the power losses. This power loss can be attributed to the total charge, voltage and the frequency of the switch. When the gate charge is small it means that the input loss will also be minimal. This is totally different from switches that use bipolar transistors where input power losses are very high.

They are reliable for current applications. They offer steady hard saturation even at short-circuit operation. The ability to switch faster enabling them to use smaller inductors in switch mode supplies. This increases overall efficiency. This reliability makes it possible to use these contactors in medical test equipment.

Switches are easily customized especially when it comes to the housing and footprint. This helps them suit and fit where they are meant to be used. Besides the customization, these contactors are quite easy to use due to the incorporation of galvanic isolation with TTL control. The sensitivity of the switches is also customized in different ways to suit the specified use.

The switches have been designed to prevent cases of overload or voltage reversal. Voltage reversals have been causing adverse effects which makes them safe for use anywhere. The technologies used in these contactors reduce risks that come with handling the current.

These contactors are voltage controlled unlike those controlled by current. This helps them to switch using very little current which means they can handle high loads without heating. On the other hand, other switches require a fair amount of current to switch which makes them create a lot of heat when handling high loads. The possibility of these switches operating in linear mode is very minimal. This is because the level of drain current does affect the gate-source voltage.

These switches guarantee faster switching. The speed advantage of these contactors makes them a better choice for everyday use. They are able to handle high frequencies due to the thin oxide layer used when making the transistors. This layer prevents the use of current when switching. Most switches especially those that use bipolar transistors take much time when switching.

These switches are suitable for both low-power applications and current applications. Their unique features and technology help achieve great results with very minimal risks. They are durable and can survive millions of cycles. The above features are just a few of many that make the switches suitable for day-to-day use. The technology also has a number of limitations. More developments are still being made to ensure that these limitations are dealt with to ensure efficiency in switching.




About the Author:



No comments:

Post a Comment